
1

FAA National Software Conference, June 2001
Software Reliability

      Jeff Knickerbocker

Software Reliability
© Jeff Knickerbocker, 2001 1

Software Reliability

Is there anything to it besides a set of hardware-derived models?
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Software Reliability
2.2.3 Software Level Determination, 12.3.4 Software Reliability Models (FAQ #26)

Software Level Determination
 

• Development of software to a software level does not imply the
assignment of a failure rate for that software. Thus, software levels
or software reliability rates based on software levels cannot be
used by the system safety assessment process as can
hardware failure rates.

• Strategies which depart from the guidelines of this paragraph
(2.2.3) need to be justified by the system safety assessment
process.

Software Reliability Models
• During the preparation of this document, methods for estimating the

post-verification probabilities of software errors were examined. The
goal was to develop numerical requirements for such probabilities
for software in computer-based airborne systems or equipment.
The conclusion reached, however, was that currently available
methods do not provide results in which confidence can be
placed to the level required for this purpose. Hence, this
document does not provide guidance for software error rates.

• If the applicant proposes to use software reliability models for
certification credit, rationale for the model should be included
in the Plan for Software Aspects of Certification, and agreed
with by the certification authority.
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Software Reliability
Is it worth considering software reliability?

• The current regulatory
guidance does not prohibit
the use of reliability models

• DO-178B is not required by
the FARs…

• Just what is the concern with
using reliability models?  Isn’t
reliability a “good thing”?

• Can we learn anything from a
quick look at reliability
concepts for either hardware
or software?
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Reliability
Reliability is …

reliability – the probability that a given item will
              perform its required function under
              given conditions for a stated time interval

• Hardware components usually have published, known
failure characteristics under operation – in short a
history on which failure predictions may be derived

• New software components have no known history in an
integrated system under specific conditions - software
components are typically custom components

• Hardware will eventually wear out - executable software
is a series of binary patterns that will never wear out per
se

• Hardware failure categories are typically treated as
random faults (statistical methods may be applied) -
software faults are design faults that may not be
random (can statistical methods be applied?)
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Software Faults - Random?

“Both the human error process
that introduces defects into code
and the run selection process that
determines which code is being
executed at any time are
dependent on an enormous
number of time-varying
variables.  The use of a random
process model is appropriate for
such a situation.”

-John Musa
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Reliability Models - Hardware
Several common models...

• Exponential

• Weibull

Density function f(t) = λe-λt

Reliability function R(t) = e-λt

Failure rate λ(t) = λ

MTBF 1/ λ

Density function f(t) = (β/η)[(t - γ)/η](β - 1)e-[(t - γ)/η] β

Reliability function R(t) = e-[(t - γ)/η] β

Failure rate λ(t) = (β/η)[(t - γ)/η](β - 1)

MTBF tbar = γ + ηΓ(β-1 + 1)



4

FAA National Software Conference, June 2001
Software Reliability

      Jeff Knickerbocker

Software Reliability
© Jeff Knickerbocker, 2001 7

Reliability Models - Software
Model de jour...

• Models, models everywhere…

– New software reliability models are presented in IEEE
Transactions on Software Engineering almost monthly

– Numerous publications are available on software reliability (a
search of Amazon for titles on software reliability yielded 145
titles)

– Some are models very complex (Kalman filter-like adaptive
processes) while others are quite simple

– Most models tend to be some type of exponential function
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Three Basic Software Reliability Models

• Simple Ratio Model

• Musa Exponential Model

• Musa-Okumoto Logarithmic Model (ref only)

These examples were chosen due to their relative simplicity and the widespread
availability of supporting information for those interested in software reliability
models.

There are many, many, possibly better choices - no specific model is being advocated!
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Simple Ratio Model
Using failure ratios to determine MTBF and Reliability

• This model is defined as follows:

MTBF =  t/r where

t  =  cumulative running time and

r  =  total number of failures noted

R(T)  =  e-λT  where

λ = 1/MTBF

T is the mission duration

Software Reliability
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Simple Ratio Model
Example

Assume a software manufacturer has developed a software intensive system, performed formal
verification and validation activities, and placed the system in the field.  After 50,000 hrs of
operation (run time versus calendar time) 25 independent errors have been reported by the users
of the system.  Then the MTBF of the system would be determined as follows:

MTBF = t/r = 50,000 hr/25 failures = 2000 hr/failure

While the reliability of the same system for 100 hours would be calculated as shown:

R(100) = e-(100/2000) ~ 0.95122 or 95%

 or, reliability could be determined from the graph on the following page:
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Simple Ratio Model
Reliability Graph

Reliability Plot; MTBF = 2000 hr
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Simple Ratio Model
Strengths

– Simple to calculate

– Simple to understand

– Similar to the hardware exponential model

– Use for reliability growth development  if adequate failure
reporting systems are in place

– Useful for comparing software intensive products for identical
missions assuming there are many, many hours of service
history (e.g., two different suppliers of a TSO’d device)

– Fundamentally based on observations versus statistical
predictions
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Simple Ratio Model
Concerns

• When does the evaluation start?
– After preliminary debug?
– After a full verification and validation?
– Applying the model too early may provide a false indicator of poor reliability

• What is defined as an error versus “future enhancement”?
– Unless defined a priori, suppliers may define errors in a way that puts them in

the best light

• How will time statistics be collected?
– User’s estimates may vary without an embedded clock
– Does the clock restart if the software modified?
– A “fix” may actually create additional problems... 

• How is it ensured that the user’s environment(s) are similar to the supplier’s
test environment?

• How are errors categorized?  Unless counted carefully, errors may be
counted multiple times
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Musa Models - Terminology

• failure intensity
– Failures per natural or time unit; represented by λ

• fault
– A defect in the system that causes a failure when executed.

A software fault is a defect in the code

• operational profile
– A set of operations and their probabilities of occurrence

(often in the form of a test requirements suite)



8

FAA National Software Conference, June 2001
Software Reliability

      Jeff Knickerbocker

Software Reliability
© Jeff Knickerbocker, 2001 15

Musa Exponential Model
Potential Applications

• Failure intensity versus the total number of failures experienced

• Experienced failures versus time

• Failure intensity versus time

• Expected failures to reach a specific fault intensity (reliability growth)

• Expected time to reach a specific fault intensity (reliability growth)

• Field failure intensity

Software Reliability
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Musa Exponential Model
Key Parameters and Fundamental Equation

• Basic Equation

λ(T) = λ0e(-λ0T/ν0)

• λ failure intensity

• λ0 initial failure intensity (empirically determined)

• ν0 total failures in infinite time (empirically determined)

• µ average or expected number of failures at a given point in time

• T time duration for which an estimation or prediction is being
made in execution time

�Note the similarity to the HW version
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Musa Exponential Model
 Failure Intensity vs. Total Number of Failures

• This form of this equation is defined as follows:

λ(µ) = λ0(1 - µ/ν0)

– Note the slope of the failure intensity is simply a constant...

dλ/dµ = -λ0/ν0 (note the linear relationship)

• As previously implied, a value of λ0 and ν0 must be determined prior
to utilizing this model

Software Reliability
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Musa Exponential Model
 Failure Intensity vs. Total Number of Failures Example

It has been determined a software component is expected to experience 200 failures over
an “infinite” period of time

Based on our experience, we know the initial failure intensity is 15 failures per execution
hour (versus calendar time)

We have observed and resolved 75 faults

What the failure intensity after we have removed those 75 faults?

– λ0 = 15 failures/execution hour
– ν0 = 200 failures
– µ = 75 failures

λ(75) = 15(1 - 75/200) = 9.375 ~ 9 failures/execution hr

with a constant decreasing failure slope of

dλ/dµ = -λ0/ν0 = -15/200 = -0.075 failures/execution hr
(assuming faults are removed)
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Musa Exponential Model
 Failure Intensity vs. Total Number of Failures Plot

Failure Intensity - Musa Exponential
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Musa Exponential Model
 Experienced Failures vs. Time Exponential Equation and Example

• This form of this equation is defined as follows:

µ(T) = ν0(1 – e(-λ0T/ν0))

• Using the same parameters as in the previous example,
Assume we are interested in how many failures we will experience after 10 hours of operation
and again after 120 hours of operation assuming faults are removed as they are discovered
Note this may be used as an indicator of remaining test time assuming continuing test
effectiveness

T = 10 execution hours,
µ(10) = 200(1 – exp(-(15*10)/200)) = 200(1-exp(-3/4)) ~106 failures

T = 120 execution hours,
µ(120) = 200(1 – exp(-(15*120)/200)) = 200(1 – exp(-9)) ~ 200 failures

This implies we will take care of more than half of the faults in the first 10 hours.
Intuitively this is very interesting – we find the easy problems early and in great
abundance but the later problems are harder and take longer!
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Musa Exponential Model
 Experienced Failures vs. Time Exponential Plot

Expected Failures - Musa Exponential
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Musa Exponential Model
 Failure Intensity vs. Time Exponential Equation and Example

• This form of this equation is defined as follows:

λ(T) = λ0e(-λ0T/ν0)

• Again, using the same parameters as in the previous examples,
Assume we are interested in what the failure intensity will be after 10 hours of operation and
again after 120 hours of operation assuming faults are removed as they are discovered
This may also be used as an indicator of remaining test time assuming continuing test
effectiveness

T = 10 execution hours,
 λ(10) = 15(exp(-(15*10)/200)) = 15(exp(-3/4)) ~ 7 failures per execution hour

T = 120 execution hours,
λ(120) = 15(exp(-(15*120)/200)) = 200(exp(-9)) ~ 2 failures per 1000 execution hours

This implies we will take care of many of the most prevalent faults in the first 10 hours
of testing.
Again this is a nice intuitive piece of information.  The easy, frequent faults are fixed
early – the harder problems appear with much less regularity!
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Musa Exponential Model
 Failure Intensity vs. Time Exponential Plot

Failure Intensity vs. Time - Musa Exponential
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Musa Exponential Model
 Expected Failures to Reach a Specific Failure Intensity Equation and Example

• This form of this equation is defined as follows:

∆µ = ν0/λ0(λP - λF),
where
λP is the current failure intensity and
λF is the future, desired failure intensity

• Again, using the same parameters as in the previous examples,
Assume we are interested in how many failures will occur before we reach a desired failure
intensity of λF = 0.00345 failures per execution hour assuming our present failure intensity
λP = 0.01 failures per execution hour
This may also be used as an indicator of remaining test time assuming continuing test
effectiveness if we have an error removal rate estimated

λF = 0.00345,
λP = 0.01,

∆µ = 200/15(0.01 - 0.00345) = 1.31 or at least two more failures need to be found
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Musa Exponential Model
 Expected Time to Reach a Specific Failure Intensity Equation and Example

• This form of this equation is defined as follows:

∆T = ν0/λ0ln(λP/λF),
where
λP is the current failure intensity and
λF is the future, desired failure intensity

• Again, using the same parameters as in the previous examples,
Assume we are interested in how much time will pass before we reach a desired failure
intensity of λF = 0.00345 failures per execution hour assuming our present failure intensity
λP = 0.01 failures per execution hour

λF = 0.00345,
λP = 0.01,

∆T = 200/15(ln(0.01 / 0.00345) ~ 14.2 execution hours
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Musa Exponential Model
 Field Failure Intensity Equation

• This form of this equation is defined as follows:

R(T) = e-λT

where
λ is the failure intensity at the time of release

• Again, using the same parameters as in the previous examples,

Assume we wish to the know the reliability for a 10 hour mission with λ = 0.00345 as noted in
a previous example

R(10) = e(0.00345*10) = 0.966 or ~ 96.6%

The form is identical to that of the simple ratio model presented earlier

Note the implications here - for 99.999% reliability on a 4 hour mission (typical commercial
flight), the failure intensity needs to be less than 0.0000025 failures per hour as shown below:

λ = -ln(0.99999)/4hr ~ 0.0000025 failures/hr
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Musa Exponential Model
 About those empirical parameters...

• The model is very attractive but
there are those empirical issues

• Parameter determination is most
critical and also extremely difficult
for this model

• The difficulty is not in the
calculations!

• The parameters require combined
qualitative and quantitative data
that must be evaluated in order to
determine the initial failure intensity
rate (λ0) and the total number of
failures (ν0)

• Several suggestions are outlined

νννν0

    λλλλ0
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Musa Exponential Model
 Parameter Estimation - Total Number of Failures (ν0)

• ν0 can be estimated by the following
equation

ν0 = ω0/β

where
β    is the fault reduction factor and
ω0   is the number of inherent faults

• Unfortunately rather than helping our
current dilemma, we have complicated
our lives by replacing one unknown
variable with two!

• We hope that it will be easier to find the
two component values rather than the
total number of failures, ν0
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Musa Exponential Model
 Parameter Estimation - Inherent Faults (ω0)

• Error seeding

– Intentionally place faults in a software program

– Track the total number of faults removed through testing

– Using the ratio of seeded faults found to inherent faults found allows an estimate of
the total inherent faults

– The method works as follows:

Assume 20 faults are “seeded”, initial verification activities find 7 of the seeded faults, and
30 non-seeded or inherent faults are found

Nseeded = 20
NseededFound = 7
Ninherent = 30
ω0 = (Nseeded / NseededFound) * Ninherent = (20/7) * 30 = 600/7 ~ 86 inherent faults

– But the technique is not without problems...

Software Reliability
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Musa Exponential Model
 Parameter Estimation - Inherent Faults (ω0)

• Error seeding - the down side

– Seeded faults may not be representative of the inherent faults -  intentional faults
are often much easier to find that unintentional faults

– Knowledgeable staff is hard to find
» Staff most familiar with the program will be the best error-seeders
» The same staff may also be some of the most knowledgeable verification team

members
» If a staff member is used for error seeding, that staff member will not be an alternative

for working verification activities

– Seeded errors must be tracked – software cannot be released that has intentional
faults

– Seeded faults may mask more serious inherent faults

– Given these considerations, other approaches need to be investigated
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Musa Exponential Model
 Parameter Estimation - Inherent Faults (ω0)

• Development and maintenance of a fault database - preferred

– Inherent errors are tracked over multiple programs within an organization

– A ratio of faults to source lines of code (SLOCs or KSLOCs) may developed for
each program (fault density, ρ)

– Averaging fault density values will provide a scale factor that may be used to
determine ω0 as follows:

ρi = Nfaults-i/SLOCi
ρbar = (ρ1 + ρ2 + … + ρn)/n
ω0 = SLOCcurrent ρbar

– Issues?
» Data availability on a consistent basis (database maintenance)
» The approach will not be exact (neither is seeding)
» Current research indicates that for any given organization which develops a series of

similar products, similar fault densities will exist across multiple programs unless some
type of disruptive event is introduced (tools, training, massive staff changes, and so on)

» Tabular starting data may be available - Musa suggests a typical fault density will be
130 faults/KSLOC starting with the code phase immediately after successful compilation
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Musa Exponential Model
 Parameter Estimation - Fault Reduction Factor (β)

• β can also be estimated...

β is a ratio that compares the net fault
reduction to the failures experienced

– Initially would seem to be unity

– Removing faults often causes faults

» Removing 100 faults may introduce 5 new
faults

» This would lead to a net reduction of 95 faults
or a fault reduction factor of 0.95 or 95%

• β should be based on historical data...
– Lacking that, current research would indicate

that a fault reduction of 0.955 is average
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Musa Exponential Model
 Parameter Estimation - Closing on Total Number of Failures (ν0)

• ν0 can now be determined

ν0 = ω0/β

where
β    is the fault reduction factor and
ω0   is the number of inherent faults

Using the numbers from the previous
discussion,

β = 0.95
ω0 = 86 faults

ν0 = 86/0.95 ~ 91 faults (rounding up)
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Musa Exponential Model
 Parameter Estimation - Initial Failure Intensity (λ0)

• λ0 can be estimated by the following
equation

 λ0 = fKω0

where
f    is the linear execution rate of the program

   (instructions per unit time)

K    is fault exposure ratio (accounts for
   iterative nature of programs and partially
   correct software)

ω0   inherent faults (ν0 = ω0/β)

• Again we have complicated our lives by
replacing one unknown variable by two!
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Musa Exponential Model
 Parameter Estimation - Linear Execution Rate (f)

• f is an easy, quantitative ratio...

f = r/I

where
r    is the average object instruction rate
I    is the number of object instructions

• But then there is fault exposure ratio,
K…

– K addresses the issue of partially correct
software

– Sometimes it fails and sometimes it
doesn’t...

K
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Musa Exponential Model
 Parameter Estimation - Fault Exposure Ratio (K)

• K should be determined from averaged historical data as follows...

K = λ0H/βHfν0

where
λ0H is the averaged initial failure intensity
βH is the averaged fault reduction factor
f is the linear execution rate
ν0 is the total number of failures

• No historical data?
– K is generally quit small - on the order of 1.8 * 10-7 – 11 * 10-7

– Efforts are underway to try and relate K to program structure and type (e.g., McCabe
complexity combined with the application type)
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Musa Exponential Model
 Parameter Estimation - Fault Exposure Ratio Example (K)

• Example solution for K

recall
K = λ0H/βHfν0  and
f = r/I

allow

f = (4 * 109 object instructions/s)/(1 * 105 object instructions) = 40,000 cycles/s
λ0H = 0.8 failures/s (note change on time units from hours to seconds)

βH = 0.95

ν0  = 200 failures

then

K = (0.8)/(0.95*(40,000)200) = 1.05 * 10-7
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Musa Exponential Model
 Parameter Estimation - Initial Fault Fault Intensity Example (λ0)

• Finally recall λ0 = fKω0

where
f is the linear execution rate of the program

(instructions per unit time)

K is fault exposure ratio (accounts for
iterative nature of programs and partially
correct software)

ω0   inherent faults (ν0 = ω0/β)

Using our previous values,

λ0 = (40,000)(1.05 * 10-7)(86) = 0.362
failures/execution s
or

λλλλ0 ~ 1,300 failures/execution hr

While this seems very large, we must remember we are starting the fault count immediately
after successful compilation and we are really screaming through our code (assuming we
can keep running).  As we get better processes through our feedback mechanisms, our
initial failure intensity may drop.
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Musa Exponential Model
Strengths

– Simple to calculate (after the empirical parameters are found)

– Intuitively appealing

– Similar to the hardware exponential model

– Could be used to determine if the current project is fitting in
organizational norms at various phases of development - e.g., fault
intensity at unit test, integration test, system test, post-certification, ...

– Could be used for organizational “process improvement”
measurements if adequate failure reporting systems are in place

– When combined with other safety/process oriented approaches, such
as FHA/FMEACA, requirements coverage analysis and structural
coverage analysis, the models could provide another perspective on
the adequacy of the system for a specific mission role
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Musa Exponential Model
Concerns

– Not really quantitative - but sure looks like it initially

– Actually quantitative, qualitative, and iterative

– Development of values for initial failure intensity (λ0), failure intensity
decay rate (β), and the total number of faults expected (ν0) is not trivial

– Naïve application of the models at arbitrary or different phases and
possibly to different products will result in an apples to oranges
comparisons

– Long-term commitment is required - Will the organization support or
even tolerate such a change if it is not the current procedure?

– Other concerns are the same as those mentioned for the simple ratio
model
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Observations/Recommendations
– Current application of software reliability models in the mission/safety

critical arena could have the most direct impact on evaluating software
components for re-use

» Mission needs and environments must be analyzed to determine if a
particular component is a candidate for re-use, but if it is, software reliability
predictions should be considered

» The initial operational profiles could provide insight about the suitability for
re-use (did the operational profiles “cover the corners”?)

» Operational data needs to be used and is likely available in the air transport
market - other sectors may not have such data readily available

» If possible, internal clocks should be used to track actual operational time,
and possibly fault histories and categories

– Assuming problem tracking mechanisms have been in place over the life
of the program, the simple ratio model could be very useful
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Conclusions

– Software reliability models are not trivial and are not a “silver bullet” for
creating safe, reliable software

– Careful application of software reliability techniques, along with the
requisite data collection and analysis required to support the models
could assist the conscientious organization in developing a better
product

– While the current models are not exact, they are providing the basis for
future development - further research and refinement will be required

– Reliability models can provide another dimension to the evaluation of
software products and software intensive systems

– Software reliability models do provide an opportunity to stand out among
the various marketplace vendors

There is more to software reliability than models - check it out
if you really have an interest in following this methodology
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